Frontiers in Air Quality Advances in Air Quality Toxicology

Fumifugium 2014

Ian Mudway

Cleaner Fuels (wood vs. coal) Separate population from pollution sources Economic benefits Green infrastructure

FUMIFUGIUM: The Inconveniencie of the AER AND SMOAK of LONDON DISSIPATED. TOGETHER With fome REMEDIES humbly PROPOSED By J. E. Efq; To His Sacred MAJESTIE, To the PARLIAMENT now Affembled.

Publifbed by His Majeffies Command.

Lucret. I. 5. Carbonúmque gravis vis, atque edor infinuatur Quam facile in cerebrum?

LON, DON, Printed by W. Godbid for Gabriel Bedel, and Thomas Collins, and are to be fold at their Shop at the Middle Temple Gate neer Temple-Bar, M. DC. LXI.

John Evelyn 1620 – 1706

One very large seething Petri dish

Know your model organism

Think about susceptibility

Deaths Registered in London Administrative County Classified by Age (Bates, 1995)									
	< 1 Month of Age	1-12 Mo. Old	1-14 Years of Age	15-44 Years of Age	45-64 Years of Age	65-74 Years of Age	75+ Years of Age		
Week Before the Episode	16	12	10	61	237	254	335		
Week After the Episode	28	26	13	99	652	717	949		
Before/ After Episode Ratio	1.75	2.17	1.3	1.62	2.75	2.82	2.83		

Vulnerability

"This cloud is so inextricably mixed with the naturally wholesome and excellent air that the inhabitants can breathe nothing but thick, dirty, smoggy air. This makes them <u>vulnerable</u> to thousands of diseases, <u>corrupting their lungs</u> and disordering their bodies, so that catarrh, coughs and tuberculosis."

Critical windows of enhanced vulnerability

Degradation of defence mechanism with age

Development

MRC-PHE Centre for Environment & Health

Public Health

Imperial College

In utero

Appreciate varying genetic background: An ethnically diverse city

"This plague of a smoke is truly intolerable because, although it does not kill at once, it is deadly and to slowly perish is worse than death itself. Is there any other place on Earth where such coughing and snuffling is to be heard as in the churches and assemblies of London, where the barking and spitting is incessant? Need I say more?"

Role of air pollution in chronic disease

"There are, I must accept, certain differences in people which allow them to thrive more in some airs compared to others."

"There are, I must accept, certain differences in people which allow them to thrive more in some airs compared to others."

Impaired lung growth

Gauderman et al, 2004 (NEJM); southern California

- 1,759 10-yr old children, 12 communities, 8-yr follow up
- Lung function growth significantly reduced in areas with higher levels of traffic-related pollutants
 - NO₂, PM_{2.5}, elemental carbon (EC) associated with reduction in growth of FEV₁ of between 79.7 and 101.4 mL
 - Clinically low FEV₁ at age 18 positively correlated with level of exposure to NO₂, PM₁₀, PM_{2.5}, EC

Gauderman et al, 2007 (Lancet); southern California

-Same study, local vs. regional pollutant levels -Living <500m from freeway associated with reduction in FEV₁ growth of 81mL (vs. living >1500m away) -Significantly lower attained FEV₁ by 18 yrs

Pollution in Tower Hamlets & Hackney

٠

Modelled annual NO₂ concentrations

Gehring U, et al. Environ Health Perspect. 2013;121(11-12):1357-64.

Context

"There are, I must accept, certain differences in people which allow them to thrive more in some airs compared to others."

Genetic Modification

Xenobiotic metabolism:

• CYP1A1, GSTM1, GSTT1, GSTP1, EPHX1, NQO1, AhR

Antioxidant defence:

• GCL, ECSOD, Nrf2

Nitrosative stress:

• iNOS, ARG1, ARG2

Onset of childhood asthma

• GSDMA, GSDMB

Random ancestry markers:

• Adjust for population stratification and predict lung function as proxy for ethnic group

Quantifying exposure BIOMARKERS

1

2

3

6

7

Air in

1 IA Traffic related met 1 2 IIA IIIA 1 2 IIA IIIA 1 8 9 10 1 1008 2 IIIA IIIA 1 8 9 10 IIIA 1 12 3 4 5 6 7 VIIIB 11 12 13 22.99 24.31 IIIB 1VB VB VIB VIB 11 12 13 2000 Augustum IIIB 1VB VIB VIIIB 11 12 13 2000 IIIB VIB VIB IIIB 12 13 2000 IIIB IVB VIB IIIB 12 13 2000 IIIB IIIB IIIB IIIA IIIB IIIB IIIB IIIB IIIB IIIB IIIA	14 15 16 1 VA VA VIA V	He
3 4 5 5 11 12 3 4 5 6 7 VIIIB 11 12 13 22.99 24.31 3 4 5 6 7 VIIIB 11 12 26.98 Sodium Magnetium IIIB IVB VB VIIB IB IIB IIB All	SCONT CONTRACTOR OF STREET	17 7IIA 4.00 Helium
11 12 3 4 5 6 7 VIIIB 11 12 26.98 Sodum Magnesium IIIB IVB VB VIB VIIB IB IIB IIB Auminum	6 7 8 12.01 14.01 16.00 11	F 10 9.00 20.18 Neon
K C C T' N C N T C N' C Z C	14 15 16 28.09 30.97 32.07 33	Cl Ar 17 18 15.45 39.95 hiorine Argon
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga 19 20 21 22 23 24 25 26 27 28 29 30 31 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 Pressum Cutation Scandium Titanium Viewfelium 52.000 Titanium Titani	32 33 34 72.61 74.92 78.96 79	Br 35 36 99.90 83.80 Krypton
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In 37 38 39 40 41 42 43 44 45 46 47 48 49 92.91 101.07 102.91 106.42 107.87 112.41 114.82 Mobdum Yttruin Zircosium Wohm Wohm Russement Rindium Rindium Rindium Silver Cadmient Indum	50 51 52 1 18.71 121.76 127.60 12	I 53 26.90 26.90 Xenon
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl 55 56 57 72 73 74 75 76 77 78 79 80 81 132.91 137.33 138.91 178.49 180.95 138.85 190.2 192.22 195.08 Gold 200.59 204.38 Cesum Bartimum Lambarum Hathum Trathum Trathum Trathum Gold Mercary Tallum	82 83 84 2 207.2 208.98 (209) (2	At Rn 85 210) (222) statine Radon
Fire Ra Acc Rf Db Sg Bh Hs Mt Inamed Unnamed Discovery Unnamed Discovery Inamed Disco	nnamed Unnamed	Unnamed Discovery

Biomarkers out

PM₁₀ Metals (Fe and Cu)

PM₁₀ Metals (Ba and Mn)

PM₁₀ Metals (Cr and V)

Cleaner Fuels (diesel) Separate the vulnerable population from pollution sources **Economic benefits** Green infrastructure Moral imperative

FUMIFUGIUM: The Inconveniencie of the AER AND SMOAK of LONDON DISSIPATED. TOGETHER With fome REMEDIES humbly PROPOSED By J.E.Efq; To His Sacred MAJESTIE, To the PARLIAMENT now Affembled,

Publifbed by His Majeflies Command.

Lucret. I. 5. Carbonúmque gravis vis, atque edor infinuatur Quam facile in cerebrum ? ——

LON, DON, Printed by W. Godbid for Gabriel Bedel, and Thomas Collins, and are to be fold at their Shop at the Middle Temple Gate neer Temple-Bar, M. DC. LXI.

"I have made this proposal for refining the quality of air in London because I believe that we should do whatever we can to enhance the honour of our nation that is capable of such greatness. <u>It troubles me</u> <u>that the health and happiness of so many people should suffer from</u> <u>the greed of a few in a city that contains enough to make its people</u> <u>the happiest on Earth</u>. Money has blinded people to the thing which keeps them alive and which can, for their own sake, be improved so easily."

Omnia explorate; meliora retinete

